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Wavelet analysis of epileptic spikes
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Interictal spikes and sharp waves in human EEG are characteristic signatures of epilepsy. These potentials
originate as a result of synchronous pathological discharge of many neurons. The reliable detection of such
potentials has been the long standing problem in EEG analysis, especially after long-term monitoring became
common in investigation of epileptic patients. The traditional definition of a spike is based on its amplitude,
duration, sharpness, and emergence from its background. However, spike detection systems built solely around
this definition are not reliable due to the presence of numerous transients and artifacts. We use wavelet
transform to analyze the properties of EEG manifestations of epilepsy. We demonstrate that the behavior of
wavelet transform of epileptic spikes across scales can constitute the foundation of a relatively simple yet
effective detection algorithm.
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Recordings of human brain electrical activity~EEG! have
been the fundamental tool for studying the dynamics of c
tical neurons since 1929. Even though the gist of this te
nique has essentially remained the same, the method
EEG data analysis have profoundly evolved during the
two decades. In 1985 Babloyantz, Salazan, and Nicolis d
onstrated that certain nonlinear measures, first introduce
the context of chaotic dynamical systems, changed du
slow-wave sleep@1#. The flurry of research work that fol
lowed this discovery focused on the application of nonlin
dynamics in quantifying brain electrical activity during di
ferent mental states, sleep stages, and under the influen
the epileptic process~for a review see, for example, Ref
@2,3#!. It must be emphasized that a straightforward interp
tation of neural dynamics in terms of such nonlinear m
sures as the largest Lyapunov exponent or the correla
dimension is not possible since most biological time ser
such as EEG, are nonstationary and consequently do no
isfy the assumptions of the underlying theory. On the ot
hand, traditional power spectral methods are also base
quite restrictive assumptions but nevertheless have tu
out to be successful in some areas of EEG analysis. Des
these technical difficulties, the number of applications
nonlinear time series analysis has been growing steadily
now includes the characterization of encephalopathies@4#,
monitoring of anesthesia depth@5#, characteristics of seizur
activity @6#, and prediction of epileptic seizures@7#. Several
other approaches are also used to elucidate the natur
electrical activity of the human brain ranging from coheren
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measures@8,9# and methods of nonequilibrium statistical m
chanics@10# to complexity measures@11,12#.

One of the most important challenges of EEG analysis
been the quantification of the manifestations of epilepsy. T
main goal is to establish a correlation between the EEG
clinical or pharmacological conditions. One of the possib
approaches is based on the properties of the interictal E
~electrical activity measured between seizures!, which typi-
cally consists of linear stochastic background fluctuations
terspersed with transient nonlinear spikes or sharp wa
These transient potentials originate as a result of a simu
neous pathological discharge of neurons within a volume
at least several mm3.

The traditional definition of a spike is based on its amp
tude, duration, sharpness, and emergence from its b
ground@13,14#. However, automatic epileptic spike detectio
systems based on this direct approach suffer from false
tections in the presence of numerous types of artifacts
nonepileptic transients. This shortcoming is particula
acute for long-term EEG monitoring of epileptic patien
which became common in 1980s. To reduce false detect
Gotman and Wang@15# made the process of spike identifi
cation dependent upon the state of EEG~active wakefulness,
quiet wakefulness, desynchronized EEG, phasic EEG,
slow EEG!. This modification leads to significant overall im
provement provided that state classification is correct.

Diambra and Malta@16# adopted nonlinear prediction fo
epileptic spike detection. They demonstrated that when
model’s parameters are adjusted during the ‘‘learning’’ ph
to assure good predictive performance for stochastic ba
ground fluctuations, the appearance of an interictal spik
marked by a very large forecasting error. This approach
appealing because it makes use of changes in EEG dyn
ics. One expects good nonlinear predictive performa
when the dynamics of the EEG interval used for building
©2003 The American Physical Society02-1
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the model is similar to the dynamics of the interval used
testing. However, it is uncertain at this point whether it
possible to develop a robust spike detection algorithm ba
solely on this idea.

As Clark, Biscay, and Echeverria put it succinctly, au
matic EEG analysis is a formidable task because of the
of ‘‘ . . . features that reflect the relevant information’’@17#.
Another difficulty is the nonstationary nature of the spik
and the background in which they are embedded. One t
nique developed for the treatment of such nonstationary t
series is wavelet analysis@18,19#. The goal of this paper is to
characterize the epileptic spikes and sharp waves in term
the properties of their wavelet transforms. In particular,
search for features that could be important in the detectio
epileptic events.

The wavelet transform is an integral transform for whi
the set of basis functions, known as wavelets, are well lo
ized both in time and frequency. Moreover, the wavelet ba
can be constructed from a single functionc(t) by means of
translation and dilation:

ca;t0
5cS t2t0

a D . ~1!

c(t) is commonly referred to as the mother function or an
lyzing wavelet. The wavelet transform of functionh(t) is
defined as

W~a,t0!5
1

Aa
E

2`

`

h~ t !ca;t0
* dt, ~2!

where c* (t) denotes the complex conjugate ofc(t). The
continuous wavelet transform of a discrete time ser
$hi% i 50

N21 of lengthN and equal spacingdt is defined as

Wn~a!5Adt

a (
n850

N21

hn8c* F ~n82n!dt

a G . ~3!

The above convolution can be evaluated for any ofN
values of the time indexn. However, by choosing allN suc-
cessive time index values, the convolution theorem allows
to calculate allN convolutions simultaneously in Fourie
space using a discrete Fourier transform~DFT!. The DFT of
$hi% i 50

N21 is

ĥk5
1

N (
n50

N21

hne22p ikn/N, ~4!

wherek50, . . . ,N21 is the frequency index. If one note
that the Fourier transform of a functionc(t/a) is uauĉ(a f),
then by the convolution theorem

Wn~a!5Aadt (
k50

N21

ĥnc* ~a fk!e
2p i f kndt, ~5!

frequenciesf k are defined in the conventional way. Usin
Eq. ~5! and a standard fast Fourier transform~FFT! routine it
is possible to efficiently calculate the continuous wave
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transform~for a given scalea) at alln simultaneously@20#. It
should be emphasized that formally Eq.~5! does not yield
the discrete linear convolution corresponding to Eq.~3! but
rather a discrete circular convolution in which the shiftn8
2n is taken moduloN. However, in the context of this work
this problem does not give rise to any numerical difficultie
This is because, for purely practical reasons, the beginn
and the end of the analyzed part of data stream are not ta
into account during the EEG spike detection. To ensure
valid spikes located at end regions are not left out we ove
data segments.

From a plethora of available mother wavelets, we emp
the sombrero

c~ t !5
2

A3
p21/4~12t2!e2t2/2, ~6!

which is particularly suitable for studying epileptic events
In the top panel of Fig. 1 we present two pieces of t

EEG recording joined at approximatelyt51s. The digital 19
channel recording sampled at 240 Hz was obtained from
juvenile epileptic patient according to the internation
10–20 standard with the reference average electrode.
epileptic spike in this figure~marked by the arrow! is fol-
lowed by two artifacts. The bottom panel of Fig. 1 displa
the contour map of the absolute value of sombrero wav
coefficientsW(a,t0). It is apparent that the red prominen
ridges correspond to the position of either spike or the m
tion artifacts. What is most important, for small scalesa, the
values of the wavelet coefficients for the spike’s ridge a
much larger than those for the artifacts. The peak value al
the spike ridge corresponds toa57. In sharp contrast, for
the range of scales used in Fig. 1 the absolute value of c
ficientsW(a,t0) for the artifacts grow monotonically witha.

FIG. 1. ~Color! Top panel: simple epileptic spike~marked by S!
followed by two artifacts. Bottom panel: contour map of the abs
lute value of the sombrero wavelet coefficients~arbitrary units! cal-
culated for the EEG signal shown above. The shades of blue co
spond to low values and the shades of red to high values.
2-2
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The question arises as to whether the behavior of
wavelet transform as a function of scale can be used to
velop a reliable detection algorithm. The first step in th
direction is to use the normalized wavelet power

w~a,t0!5W2~a,t0!/s2 ~7!

instead of the wavelet coefficients to reduce the depende
on the amplitude of the EEG recording. In the above form
s2 is the variance of the portion of the signal being analyz
~typically we use pieces of length 1024 for EEG tracin
sampled at 240 Hz!. In actual numerical calculations we pre
fer to use the square ofw(a,t0) to merely increase the rang
of values analyzed during the spike detection process. In
2 w2 for the signal used in Fig. 1 is plotted for three sca
A53, B57, andC520.

In the most straightforward approach, we identify an EE
transient potential as a simple or isolated epileptic spik
and only if: ~1! the value ofw2 at a57 is greater than a
predetermined threshold valueT1, ~2! the square of normal-
ized wavelet power decreases from scale a57 to a520, and
~3! the value ofw2 at a53 is greater than a predetermine
threshold valueT2.

The threshold valuesT1 andT2 may be considered as th
model’s parameters, which can be adjusted to achieve
desiredsensitivity~the ratio of detected epileptic events
the total number of epileptic events present in the analy
EEG tracing! andselectivity~the ratio of epileptic events to
the total number of events marked by the algorithm as e
leptic spikes!.

While this simple algorithm is quite effective for simp
spikes, such as one shown in Fig. 1, it fails for the comm
case of an epileptic spike accompanied by a slow wave w
comparable amplitude. The example of such complex

FIG. 2. Square of normalized wavelet power for three differ
scalesA,B,C @panels~b!–~d!#. The EEG signal shown in pane
~a! is the same as that used in Fig. 1.
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given in Fig. 3~a!. The overlap of the negative tail of th
sombrero with the slow wave yields the inherently low va
ues ofw2 at scaleA @panel ~b!# and scaleB @panel ~c!# as
compared to those characteristic of the ‘‘isolated’’ spik
Nevertheless, the normalized wavelet power does decr
from scaleB to C. Consequently, in the same vein as t
argument we presented above, we can develop an algori
which detects the epileptic spike in the vicinity of a slo
wave by calculating the following linear combination o
wavelet transforms:

W̃~a,t0!5c1W~a,t0!1c2W~as ,t01t! ~8!

and checking whether the square of corresponding norm
ized power w̃(a,t0)5W̃2(a,t0)/s2 at scalesa53 and a

57 exceeds the threshold valueT̃1 andT̃2, respectively. The
second term in Eq.~8! allows us to detect the slow wave th
follows the spike. The parametersas and t are chosen to
maximize the overlap of the wavelet with the slow wave. F
the sombrero we useas528 andt50.125s. By varying the
values of coefficientsc1 andc2, it is possible to control the
relative contribution of the spike and the slow wave to t
linear combination~8!.

For testing purposes, we built up the database of artifa
and spikes. We made available some of these EEG trac
@21# along with the examples of the numerical calculation
While the analysis of the pieces of EEG recordings, such
those shown in Figs. 2 and 3, is essential in determining
generic properties of epileptic events, it can hardly reflect
difficulties one can encounter in interpretation of clinic
EEG. Therefore we selected fourchallengingEEG tracings
with 340 epileptic events. The algorithm described in th

t FIG. 3. ~a! Epileptic spike–slow-wave complex. The amplitud
of the slow wave is comparable to that of the spike. The squar
normalized wavelet power for this signal is shown in panels~b!–~d!
for three different scalesA,B,C.
2-3
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work marked 356 events out of which 239 turned out to
the epileptic events. Thus the sensitivity of the algorithm w
70% and its selectivity was equal to 67%. We then analy
the same tracings with the leading commercial spike dete
developed by the Persyst Development Corporation~Insight
2001.07.12!. This software marked 654 events out of whi
268 were epileptic events. Thus slightly better sensitivity
79% was achieved at the expense of the low 41% selecti
The performance of preliminary numerical implementati
of the detection algorithm presented in this work is excell
and allows to process 24 hour EEG recording~19 channels
sampled at 240 Hz! in a matter of minutes on the averag
personal computer.

The goal of wavelet analysis of the two types of spik
presented in this paper, was to elucidate the approach to
leptic events detection, which explicitly hinges on the beh
ior of wavelet power spectrum of EEG signalacrossscales
.
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and not merely on its values. Thus, this approach is dist
not only from the detection algorithms based upon discr
multiresolution representations of EEG recordings@22–26#
but also from the method developed by Senhadji and W
dling, which employs continuous wavelet transform@27#.

Epilepsy is a common disease, which affects 1–2 % of
population and about 4% of children@28#. In some epilepsy
syndromes interictal paroxysmal discharges of cerebral n
rons reflect the severity of the epileptic disorder and the
selves are believed to contribute to the progressive dis
bances in cerebral functions~e.g., speech impairmen
behavioral disturbances! @29#. In such cases precise quan
tative spike analysis would be extremely important. The e
leptic event detector described in this paper was develo
with this particular goal in mind and its application to th
studies of the Landau-Kleffner syndrome will be presen
elsewhere.
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