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Wavelet analysis of epileptic spikes
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Interictal spikes and sharp waves in human EEG are characteristic signatures of epilepsy. These potentials
originate as a result of synchronous pathological discharge of many neurons. The reliable detection of such
potentials has been the long standing problem in EEG analysis, especially after long-term monitoring became
common in investigation of epileptic patients. The traditional definition of a spike is based on its amplitude,
duration, sharpness, and emergence from its background. However, spike detection systems built solely around
this definition are not reliable due to the presence of numerous transients and artifacts. We use wavelet
transform to analyze the properties of EEG manifestations of epilepsy. We demonstrate that the behavior of
wavelet transform of epileptic spikes across scales can constitute the foundation of a relatively simple yet
effective detection algorithm.
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Recordings of human brain electrical activigEG) have = measure$8,9] and methods of nonequilibrium statistical me-
been the fundamental tool for studying the dynamics of corchanics[10] to complexity measurgsl1,12.
tical neurons since 1929. Even though the gist of this tech- One of the most important challenges of EEG analysis has
nigue has essentially remained the same, the methods b&en the quantification of the manifestations of epilepsy. The
EEG data analysis have profoundly evolved during the lasiain goal is to establish a correlation between the EEG and
two decades. In 1985 Babloyantz, Salazan, and Nicolis dentlinical or pharmacological conditions. One of the possible
onstrated that certain nonlinear measures, first introduced iapproaches is based on the properties of the interictal EEG
the context of chaotic dynamical systems, changed duringelectrical activity measured between seizlyreghich typi-
slow-wave sleed1]. The flurry of research work that fol- cally consists of linear stochastic background fluctuations in-
lowed this discovery focused on the application of nonlineatterspersed with transient nonlinear spikes or sharp waves.
dynamics in quantifying brain electrical activity during dif- These transient potentials originate as a result of a simulta-
ferent mental states, sleep stages, and under the influence méous pathological discharge of neurons within a volume of
the epileptic processéfor a review see, for example, Refs. at least several mtn
[2,3]). It must be emphasized that a straightforward interpre- The traditional definition of a spike is based on its ampli-
tation of neural dynamics in terms of such nonlinear meatude, duration, sharpness, and emergence from its back-
sures as the largest Lyapunov exponent or the correlatioground[13,14). However, automatic epileptic spike detection
dimension is not possible since most biological time seriessystems based on this direct approach suffer from false de-
such as EEG, are nonstationary and consequently do not saéctions in the presence of numerous types of artifacts and
isfy the assumptions of the underlying theory. On the othenonepileptic transients. This shortcoming is particularly
hand, traditional power spectral methods are also based arcute for long-term EEG monitoring of epileptic patients,
quite restrictive assumptions but nevertheless have turnegathich became common in 1980s. To reduce false detections
out to be successful in some areas of EEG analysis. Despiteotman and Wangj15] made the process of spike identifi-
these technical difficulties, the number of applications ofcation dependent upon the state of EEGtive wakefulness,
nonlinear time series analysis has been growing steadily anguiet wakefulness, desynchronized EEG, phasic EEG, and
now includes the characterization of encephalopatidés slow EEG. This modification leads to significant overall im-
monitoring of anesthesia depfth], characteristics of seizure provement provided that state classification is correct.
activity [6], and prediction of epileptic seizur¢g]. Several Diambra and Maltd16] adopted nonlinear prediction for
other approaches are also used to elucidate the nature epileptic spike detection. They demonstrated that when the
electrical activity of the human brain ranging from coherencemodel’s parameters are adjusted during the “learning” phase
to assure good predictive performance for stochastic back-
ground fluctuations, the appearance of an interictal spike is
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the model is similar to the dynamics of the interval used for 2
testing. However, it is uncertain at this point whether it is
possible to develop a robust spike detection algorithm based s
solely on this idea. s
As Clark, Biscay, and Echeverria put it succinctly, auto- i
matic EEG analysis is a formidable task because of the lack
of “... features that reflect the relevant informatioff7]. » ; ; ‘
Another difficulty is the nonstationary nature of the spikes 0 0:5 ﬁm; ol 1.5 2
and the background in which they are embedded. One tech-

nique developed for the treatment of such nonstationary time %0

series is wavelet analysi$8,19. The goal of this paper is to

characterize the epileptic spikes and sharp waves in terms of © 20

the properties of their wavelet transforms. In particular, we 1 \ ’ \

search for features that could be important in the detection of
epileptic events.

The wavelet transform is an integral transform for which
the set of basis functions, known as wavelets, are well local-
can be constructed from a single functigt) by means of followed by two artifacts. Bottom panel: contour map of the abso-
translation and dilation: lute value of the sombrero wavelet coefficietasbitrary unit3 cal-
culated for the EEG signal shown above. The shades of blue corre-
spond to low values and the shades of red to high values.
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¥(t) is commonly referred to as the mother function or an(,ﬂ_trr:msform(for a given scal@) at all n simultaneously20]. It

lyzing wavelet. The wavelet transform of functior(t) is  Should be emphasized that formally H§) does not yield
defined as the discrete linear convolution corresponding to B).but
rather a discrete circular convolution in which the shift
1 (= —n is taken moduldN. However, in the context of this work,
W(a,t0)=—J' h(t) ¢, dt, (2)  this problem does not give rise to any numerical difficulties.
Jal-= o This is because, for purely practical reasons, the beginning
" . and the end of the analyzed part of data stream are not taken
Whefe ¢*(t) denotes the complex conjugate ‘p(t_)' The ._into account during the EEG spike detection. To ensure that
continuous wavelet transform of a discrete time serieg g spikes located at end regions are not left out we overlap
{hi}iZg of lengthN and equal spacingt is defined as data segments.
) From a plethora of available mother wavelets, we employ
(n"—n)dt 3) the sombrero

a

&N 1
Wy(@)=\/ 2 hoy*
n"=0

The above convolution can be evaluated for anyNof () = 2 V41— 12)e 12 ©6)
values of the time inder. However, by choosing aN suc- 3 '

cessive time index values, the convolution theorem allows us

to calculate allN convolutions simultaneously in Fourier

space using a discrete Fourier transfaFT). The DET of ~ Which is particularly suitable for studying epileptic events.
{hi}_Nfol is In the top panel of Fig. 1 we present two pieces of the
o

EEG recording joined at approximately 1s. The digital 19
channel recording sampled at 240 Hz was obtained from a

N . channel recording sar : _ !
hk=ﬁ E hpe ™ 27kV/N, (4)  juvenile epileptic patient according to the international
n=0 10-20 standard with the reference average electrode. The
wherek=0, ... N—1 is the frequency index. If one notes epileptic spike in this figurédmarked by the arrois fol-

. ) ) n lowed by two artifacts. The bottom panel of Fig. 1 displays
that the Fourier transform of a functio(t/a) is [a|y(af),  the contour map of the absolute value of sombrero wavelet
then by the convolution theorem coefficientsW(a,to). It is apparent that the red prominent
ridges correspond to the position of either spike or the mo-
tion artifacts. What is most important, for small scadeshe
values of the wavelet coefficients for the spike’s ridge are
much larger than those for the artifacts. The peak value along
frequenciesf, are defined in the conventional way. Using the spike ridge corresponds &o=7. In sharp contrast, for
Eq. (5) and a standard fast Fourier transfo(f#T) routine it  the range of scales used in Fig. 1 the absolute value of coef-
is possible to efficiently calculate the continuous wavelefficientsW(a,ty) for the artifacts grow monotonically wita.

N—-1

W,(a)=ast kZO hoy* (af)e? et (5)
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FIG. 2. Square of normalized wavelet power for three different
scalesA<B<C [panels(b)—(d)]. The EEG signal shown in panel
(a) is the same as that used in Fig. 1.

FIG. 3. (a) Epileptic spike—slow-wave complex. The amplitude
of the slow wave is comparable to that of the spike. The square of
normalized wavelet power for this signal is shown in pariels(d)

. . . for three different scaleA<B<C.
The question arises as to whether the behavior of the

wavelet transform asa function .Of scale can be use(_j to (.jeg'iven in Fig. 3a). The overlap of the negative tail of the
vglop_a r.ellable detection algorlthm. The first step in thISsombrero with the slow wave yields the inherently low val-
direction is to use the normalized wavelet power ues ofw? at scaleA [panel (b)] and scaleB [panel (c)] as
compared to those characteristic of the “isolated” spike.
Nevertheless, the normalized wavelet power does decrease
instead of the wavelet coefficients to reduce the dependen(l:reom scaleB to C. Consequently, in the same vein as the

on the amplitude of the EEG recording. In the above formulaargumem we presented above, we can develop an algorithm,

2 s th . fth . f the sianal bei | d/vhich detects the epileptic spike in the vicinity of a slow
7 '.St € variance o't e portion of the signal being analyzeq, .ve by calculating the following linear combination of
(typically we use pieces of length 1024 for EEG tracings .

: : wavelet transforms:

sampled at 240 HzIn actual numerical calculations we pre-
fer to use the square @f(a,ty) to merely increase the range
of values analyzed during the spike detection process. In Fig.
2 w? for the signal used in Fig. 1 is plotted for three scales . .
A=3, B=7, andC=20. and checking whether the square of corresponding normal-

In the most straightforward approach, we identify an EEGized powerw(a,to)=W?(a,t;)/c® at scalesa=3 and a
transient potential as a simple or isolated epileptic spike if=7 exceeds the threshold valli¢ andT,, respectively. The
and only if: (1) the value ofw? at a=7 is greater than a second term in Eq8) allows us to detect the slow wave that
predetermined threshold vallg, (2) the square of normal- follows the spike. The parametess and 7 are chosen to
ized wavelet power decreases from scate7ato a=20, and  maximize the overlap of the wavelet with the slow wave. For
(3) the value ofw? ata=3 is greater than a predetermined the sombrero we usa,=28 andr=0.125%. By varying the
threshold valuer,. values of coefficients, andc,, it is possible to control the

The threshold value$; andT, may be considered as the relative contribution of the spike and the slow wave to the
model’'s parameters, which can be adjusted to achieve thimear combination(8).
desiredsensitivity (the ratio of detected epileptic events to  For testing purposes, we built up the database of artifacts
the total number of epileptic events present in the analyzednd spikes. We made available some of these EEG tracings
EEG tracing and selectivity(the ratio of epileptic events to [21] along with the examples of the numerical calculations.
the total number of events marked by the algorithm as epiWhile the analysis of the pieces of EEG recordings, such as
leptic spikes. those shown in Figs. 2 and 3, is essential in determining the

While this simple algorithm is quite effective for simple generic properties of epileptic events, it can hardly reflect the
spikes, such as one shown in Fig. 1, it fails for the commontifficulties one can encounter in interpretation of clinical
case of an epileptic spike accompanied by a slow wave witlEEG. Therefore we selected foahallengingEEG tracings
comparable amplitude. The example of such complex isvith 340 epileptic events. The algorithm described in this

W(a,t0)=W2(a,t0)/02 (7)

W(a,tg) =c;W(a,tg) +c,W(ag,to+ 7) 8
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work marked 356 events out of which 239 turned out to beand not merely on its values. Thus, this approach is distinct
the epileptic events. Thus the sensitivity of the algorithm washot only from the detection algorithms based upon discrete
70% and its selectivity was equal to 67%. We then analyzednultiresolution representations of EEG recordiig2-26
the same tracings with the leading commercial spike detectdsut also from the method developed by Senhadji and Wen-
developed by the Persyst Development Corporatiosight  dling, which employs continuous wavelet transfor2T].
2001.07.12 This software marked 654 events out of which  Epilepsy is a common disease, which affects 1-2 % of the
268 were epileptic events. Thus slightly better sensitivity ofpopulation and about 4% of childrgé@8]. In some epilepsy
79% was achieved at the expense of the low 41% selectivitysyndromes interictal paroxysmal discharges of cerebral neu-
The performance of preliminary numerical implementationrons reflect the severity of the epileptic disorder and them-
of the detection algorithm presented in this work is excellenselves are believed to contribute to the progressive distur-
and allows to process 24 hour EEG recordid§ channels bances in cerebral functionge.g., speech impairment,
sampled at 240 Hzin a matter of minutes on the average behavioral disturbancg$29]. In such cases precise quanti-
personal computer. tative spike analysis would be extremely important. The epi-
The goal of wavelet analysis of the two types of spikes,leptic event detector described in this paper was developed
presented in this paper, was to elucidate the approach to epidith this particular goal in mind and its application to the
leptic events detection, which explicitly hinges on the behavstudies of the Landau-Kleffner syndrome will be presented
ior of wavelet power spectrum of EEG sigredrossscales elsewhere.
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